

Thursday 14 May 2015 – Morning

AS GCE MATHEMATICS

4725/01 Further Pure Mathematics 1

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:

- Printed Answer Book 4725/01
- List of Formulae (MF1)

Duration: 1 hour 30 minutes

Other materials required:Scientific or graphical calculator

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer **all** the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do **not** write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is **72**.
- The Printed Answer Book consists of **12** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

- 2
- 1 The complex number x + iy is denoted by z. Express $3zz^* |z|^2$ in terms of x and y. [3]

2 Find
$$\sum_{r=1}^{n} (3r^2 - 5)$$
, expressing your answer in a fully factorised form. [4]

3 The matrix **A** is given by $\mathbf{A} = \begin{pmatrix} 2 & a \\ 0 & 1 \end{pmatrix}$, where *a* is a constant.

(i) Find
$$A^{-1}$$
. [2]

The matrix **B** is given by
$$\mathbf{B} = \begin{pmatrix} 2 & a \\ 4 & 1 \end{pmatrix}$$
.

(ii) Given that $\mathbf{PA} = \mathbf{B}$, find the matrix \mathbf{P} .

4 Prove by induction that, for
$$n \ge 1$$
, $\sum_{r=1}^{n} r(3r+1) = n(n+1)^2$. [5]

- 5 The loci C_1 and C_2 are given by |z+2| = 2 and $\arg(z+2) = \frac{5}{6}\pi$ respectively.
 - (i) Sketch, on a single Argand diagram, the loci C_1 and C_2 . [4]
 - (ii) Find the complex number represented by the intersection of C_1 and C_2 . [2]
 - (iii) Indicate, by shading, the region of the Argand diagram for which

$$|z+2| \le 2$$
 and $\frac{5}{6}\pi \le \arg(z+2) \le \pi$. [2]

[3]

- 6 The matrix **M** is given by $\mathbf{M} = \begin{pmatrix} 0 & 2 \\ -1 & 0 \end{pmatrix}$.
 - (i) The diagram in the Printed Answer Book shows the unit square OABC. The image of the unit square under the transformation represented by M is OA'B'C'. Draw and label OA'B'C', indicating clearly the coordinates of A', B' and C'.
 - (ii) The transformation represented by M is equivalent to a transformation P followed by a transformation Q. Give geometrical descriptions of a possible pair of transformations P and Q and state the matrices that represent them.
- 7 (i) Use an algebraic method to find the square roots of the complex number 5+12i. You must show sufficient working to justify your answers. [5]
 - (ii) Hence solve the quadratic equation $x^2 4x 1 12i = 0$. [5]

8 (i) Show that
$$\frac{3}{r-1} - \frac{2}{r} - \frac{1}{r+1} \equiv \frac{4r+2}{r(r^2-1)}$$
 [2]

(ii) Hence find an expression, in terms of *n*, for
$$\sum_{r=2}^{n} \frac{4r+2}{r(r^2-1)}$$
. [6]

(iii) Hence find the value of
$$\sum_{r=4}^{\infty} \frac{4r+2}{r(r^2-1)}.$$
 [2]

9 The matrix **D** is given by $\mathbf{D} = \begin{pmatrix} 1 & 3 & 4 \\ 2 & a & 3 \\ 0 & 1 & a \end{pmatrix}$.

- (i) Find the values of *a* for which **D** is singular.
- (ii) Three simultaneous equations are shown below.

$$x+3y+4z = 3$$
$$2x+ay+3z = 2$$
$$y+az = 0$$

For each of the following values of *a*, determine whether or not there is a unique solution. If a unique solution does not exist, determine whether the equations are consistent or inconsistent.

(a)
$$a = 3$$

(b) $a = 1$ [4]

- 10 The cubic equation $x^3 + 4x + 3 = 0$ has roots α , β and γ .
 - (i) Use the substitution $x = \sqrt{u}$ to obtain a cubic equation in u. [3]
 - (ii) Find the value of $\alpha^4 + \beta^4 + \gamma^4 + \alpha\beta\gamma$. [7]

END OF QUESTION PAPER

[6]

4725

Question		tion	Answer	Marks	Guidance	
1			$z^* = x - iy$	B1	Conjugate stated or used	
			$ z = \sqrt{x^2 + y^2}$	B1	Modulus or it's square stated or used	
			$2(x^2 + y^2)$	B1	Obtain correct answer, a.e.f. but not involving i	
				[3]		
2				M1*	Express as difference using standard result for $\sum r^2$	
			$\frac{1}{2}n(n+1)(2n+1)-5n$	A1	Correct unsimplified expression	
				DM1	Obtain at least factor of <i>n</i>	
			$\frac{1}{2}n(2n-3)(n+3) \text{ or } n(n-\frac{3}{2})(n+3)$	A1	Obtain correct answer, only these versions	
			_	[4]		
3	(i)		1(1 - a)	B1	Both diagonals correct	
			$\begin{bmatrix} -2\\ 0 & 2 \end{bmatrix}$ or equivalent	B1	Divide by correct determinant	
				[2]		
3	(ii)	Either	$\mathbf{P} = \mathbf{B}\mathbf{A}^{-1}$	B1	State or use correct expression for P	
			$\begin{pmatrix} 1 & 0 \end{pmatrix}$	M1	Multiplication attempt, 2 elements correct for any	
			$\begin{pmatrix} 2 & 1-2a \end{pmatrix}$	110	pair of matrices	
				Alft	Obtain correct answer a.e.i. It for their (1)	
		0	$\mathbf{U}_{\mathbf{u}} = \mathbf{D}\mathbf{A} = \mathbf{D}$	[3]	State on find connect 1 st a lower of D	
		Or	Using $\mathbf{P}\mathbf{A} = \mathbf{B}$	BI M1	State of find correct 1 column of P Multiplication attempt to find "1 2a"	
					$\begin{array}{c} \text{Multiplication attempt to find} 1-2a \\ \text{Obtain completely correct answer} \end{array}$	
4				D1	Show sufficient working to varify result true when	
4				DI	Show sufficient working to verify result true when $n = 1$	
			$k(k+1)^2 + (k+1)(3k+4)$	M1*	Add next term in series	
				DM1	Attempt to factorise their expression	
			$(k+1)(k+2)^2$	Al	Sufficient working to obtain this correct answer	
			$(n \pm 1)(n \pm 2)$	D1		
				BI	previous 4 marks earned	
				[5]		

Question		tion	Answer	Marks	Guidance	
5	(i)			B1	Circle centre $(-2, 0)$ or circle centre $(2, 0)$	
				B1	Touching <i>y</i> -axis at origin	
				B1	Half line with negative slope upwards	
				B1	Completely correct diagram	
				[4]		
5	(ii)		$-2 - \sqrt{3} + i$	Blft D1ft	Correct real part and correct imaginary part of a	
				вш	their circle allow decimals (-3.73 or better) or trig	
					expressions	
				[2]	•	
5	(iii)			B1ft	Shade inside their circle	
				B1	Completely correct diagram and shading	
				[2]	S.C. allow last B1 for radius or complete line	
6	(i)			B1	Coordinates of any 2 images seen	Might be
			A'(0,-1) B'(2,-1) C'(2,0)	B1	Coordinates of 3 rd image seen	columns
				B1	Completely correct labelled diagram, must include indication of coordinates	
				[3]		
6	(ii)		$(0 \ 1) \ (2 \ 0)$	B1	Rotation and stretch or vice versa	
			$\begin{pmatrix} -1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \end{pmatrix}$	B1	Rotation 90° clockwise, then Stretch s.f. 2 parallel	Must be a
					to x -axis	correct pair in
				DIA	Or Stretch s.f. 2 parallel to y-axis & Rotation 90°	Consistent with
				BIII B1ft	Correct matrix	their pair of
				DIR	Correct matrix	transformations
			(1 0) (0 1)		S.C. If 1 matrix correct, correct 2 nd matrix can	Just a trig form
			Or $\begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix}$ and $\begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix}$		be found by matrix multiplication and not be	for rotation not
					necessarily consistent with their transformation,	acceptable
				[[4]	but not it.	
				[4]		

⁴⁷²⁵

4725

	Question		Answer	Marks	Guidance	
7	(i)			M1	Attempt to equate real and imaginary parts of $(x + iy)$	
					and $5 + 12i$	
			-2 -2 F 2 425	A 1		
			$x^2 - y^2 = 5, 2xy_1 = 121$	AI	Obtain both results or equivalent	
				M1	Obtain and solve a quadratic in x^2 or y^2 or solve by inspection	
			$3 + 2i$ and $-3 - 2i$ or $\pm(3 + 2i)$	A1 A1	Obtain correct answers as complex numbers	
				[5]	S.C. \pm (3 \pm 2i) scores A1	
7	(ii)			M1	Solve using quadratic formula or complete square	
			$(4 \pm 2\sqrt{5 + 12i})/2$	A1	Obtain correct answers, or simpler version	
				M1	Use result(s) from (i)	
			$5 + 2i$ and $-1 - 2i$ or $2 \pm (3 + 2i)$	A1 A1	Obtain correct answers	If more than 2
						roots A0 A0
				[5]		
8	(i)			M1	Use correct common denominator, numerator must	
					be quadratic	
				A1	Obtain given result	
				[2]		
8	(ii)			M1	Express terms as differences using (i)	
				M1	Attempt this for at least first 3 terms	
				A1	First 3 terms all correct	
				A1	Last 2 terms correct	
			$\frac{7}{3} - \frac{3}{1} - \frac{1}{1}$	M1	Show terms cancelling	Need not be
			2 n n+1	AI	Obtain correct answer, must be in terms of <i>n</i>	tidied up
				[6]		
8	(iii)		5	M1	Attempt to start summation at correct term	Could be
			4	AI	Obtain correct answer from correct working	$L_2 - L_2^2$
				[2]		
1						

Question		tion	Answer	Marks	Guidance	
9	(i)			M1	Attempt to find det D	
				M1	Show correct process for a 3×3 , condone sign	Or Cramer's
				MI	chois Show compating consists for a 2 × 2	rule or similar
			2 6 - 15		Show correct processes for a 2×2	
			a - 6a + 5	AI M1	Obtain correct answer A the matrix $\mathbf{D} = 0$	
					Attempt to solve det $\mathbf{D} = 0$	
			a = 5 or 1	AI	Obtain correct answers	
	(**)			[0]		
9	(11)	(a)(b)			State unique solution	
				BI M1	State non unique solutions A the method solutions	
					Attempt to solve equations with $a - 1$	
					Explain inconsistency with correct working	
				[4]	s.c. Answer to (1) wrong, anow correct unique/non-unique B1ft, B1ft only	

⁴⁷²⁵

4725

Question		tion	Answer	Marks	Guidance	
10	(i)			B1	Use given substitution correctly in LHS of equation	
				M1	Rearrange and square to eliminate \sqrt{u} or multiply by	
					$u^{\frac{2}{2}} + 4u^{\frac{1}{2}} - 3$	
			$u^3 + 8u^2 + 16u - 9 = 0$	A1	Obtain correct answer, must be an equation $= 0$	
				[3]		
10	(ii)	Either	$\alpha\beta\gamma = -3$	B1	State or use correct result	
			$\sum \alpha^2 = -8 \qquad \sum \alpha^2 \beta^2 = 16$	B1B1	Use correct result, using correct (i) or using an identity involving $\sum \alpha = 0, \sum \alpha \beta = 4$	
				M1*	Obtain an identity connecting $\sum \alpha^4$ and $(\sum \alpha^2)^2$	
			$(\sum a^2)^2 = \sum a^4 + 2 \sum a^2 \beta^2$	A1	Obtain a correct answer	
				DM1	Lize their velves in their supression	
			20		Obtain correct answer, a wa	
			29	AI	Obtain correct answer, c.w.o.	
				[7]		
		Or	$\alpha\beta\gamma = -3$	B1	State or use correct result	
			$\sum \alpha = 0, \sum \alpha \beta = 4, \sum \alpha^2 = -8,$	B1 B1	Use any 2 correct B1, other 2 correct B1	
			$\sum \alpha^2 \beta^2 = 16$			
				M1	Expand $(\alpha + \beta + \nu)^4$ and get expression involving	
					symmetric functions only	
			$\left\langle \alpha^{4}+4\right\rangle \alpha^{2}$. $\left\langle \alpha\beta+6\right\rangle \alpha^{2}\beta^{2}+8\alpha\beta\gamma\rangle\alpha$			
				A1	Obtain correct expression	
				MI	Lize their velves in their supression	
					Obtain correct answer, a wa	
	1			AI	Obtain correct allswer, C.w.o.	